博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Tensorflow快餐教程(1) - 30行代码搞定手写识别
阅读量:6289 次
发布时间:2019-06-22

本文共 10103 字,大约阅读时间需要 33 分钟。

去年买了几本讲tensorflow的书,结果今年看的时候发现有些样例代码所用的API已经过时了。看来自己维护一个保持更新的Tensorflow的教程还是有意义的。这是写这一系列的初心。
快餐教程系列希望能够尽可能降低门槛,少讲,讲透。
为了让大家在一开始就看到一个美好的场景,而不是停留在漫长的基础知识积累上,参考网上的一些教程,我们直接一开始就直接展示用tensorflow实现MNIST手写识别的例子。然后基础知识我们再慢慢讲。
Tensorflow安装速成教程
由于Python是跨平台的语言,所以在各系统上安装tensorflow都是一件相对比较容易的事情。GPU加速的事情我们后面再说。
Linux平台安装tensorflow
我们以Ubuntu 16.04版为例,首先安装python3和pip3。pip是python的包管理工具。
sudo apt install python3 sudo apt install python3-pip
然后就可以通过pip3来安装tensorflow:
pip3 install tensorflow --upgrade
MacOS安装tensorflow
建议使用Homebrew来安装python。
brew install python3
安装python3之后,还是通过pip3来安装tensorflow.
pip3 install tensorflow --upgrade
Windows平台安装Tensorflow
Windows平台上建议通过Anaconda来安装tensorflow,下载地址在:
然后打开Anaconda Prompt,输入:
conda create -n tensorflow pip activate tensorflow pip install --ignore-installed --upgrade tensorflow
这样就安装好了Tensorflow。
我们迅速来个例子试下好不好用:
import tensorflow as tf a = tf.constant(1) b = tf.constant(2) c = a * b sess = tf.Session() print(sess.run(c))
输出结果为2.
Tensorflow顾名思义,是一些Tensor张量的流组成的运算。
运算需要一个Session来运行。如果print(c)的话,会得到
Tensor("mul_1:0", shape=(), dtype=int32)
就是说这是一个乘法运算的Tensor,需要通过Session.run()来执行。
入门捷径:线性回归
我们首先看一个最简单的机器学习模型,线性回归的例子。
线性回归的模型就是一个矩阵乘法:
tf.multiply(X, w)
然后我们通过调用Tensorflow计算梯度下降的函数tf.train.GradientDescentOptimizer来实现优化。
我们看下这个例子代码,只有30多行,逻辑还是很清晰的。例子来自github上大牛的工作: ,不是我的原创。
import tensorflow as tf import numpy as np trX = np.linspace(-1, 1, 101) trY = 2 * trX + np.random.randn(*trX.shape) * 0.33 # 创建一些线性值附近的随机值 X = tf.placeholder("float") Y = tf.placeholder("float") def model(X, w): return tf.multiply(X, w) # X*w线性求值,非常简单 w = tf.Variable(0.0, name="weights") y_model = model(X, w) cost = tf.square(Y - y_model) # 用平方误差做为优化目标 train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost) # 梯度下降优化 # 开始创建Session干活! with tf.Session() as sess: # 首先需要初始化全局变量,这是Tensorflow的要求 tf.global_variables_initializer().run() for i in range(100): for (x, y) in zip(trX, trY): sess.run(train_op, feed_dict={X: x, Y: y}) print(sess.run(w))
最终会得到一个接近2的值,比如我这次运行的值为1.9183811
多种方式搞定手写识别
线性回归不过瘾,我们直接一步到位,开始进行手写识别。
我们采用深度学习三巨头之一的Yann Lecun教授的MNIST数据为例。如上图所示,MNIST的数据是28x28的图像,并且标记了它的值应该是什么。
线性模型:logistic回归
我们首先不管三七二十一,就用线性模型来做分类。
算上注释和空行,一共加起来30行左右,我们就可以解决手写识别这么困难的问题啦!请看代码:
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w): return tf.matmul(X, w) # 模型还是矩阵乘法 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784]) Y = tf.placeholder("float", [None, 10]) w = init_weights([784, 10]) py_x = model(X, w) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # 计算误差 train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # construct optimizer predict_op = tf.argmax(py_x, 1) with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(100): for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)): sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]}) print(i, np.mean(np.argmax(teY, axis=1) == sess.run(predict_op, feed_dict={X: teX})))
经过100轮的训练,我们的准确率是92.36%。
无脑的浅层神经网络
用了最简单的线性模型,我们换成经典的神经网络来实现这个功能。神经网络的图如下图所示。
我们还是不管三七二十一,建立一个隐藏层,用最传统的sigmoid函数做激活函数。其核心逻辑还是矩阵乘法,这里面没有任何技巧。
h = tf.nn.sigmoid(tf.matmul(X, w_h)) return tf.matmul(h, w_o)
完整代码如下,仍然是40多行,不长:
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # 所有连接随机生成权值 def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w_h, w_o): h = tf.nn.sigmoid(tf.matmul(X, w_h)) return tf.matmul(h, w_o) mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784]) Y = tf.placeholder("float", [None, 10]) w_h = init_weights([784, 625]) w_o = init_weights([625, 10]) py_x = model(X, w_h, w_o) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # 计算误差损失 train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # construct an optimizer predict_op = tf.argmax(py_x, 1) with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(100): for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)): sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]}) print(i, np.mean(np.argmax(teY, axis=1) == sess.run(predict_op, feed_dict={X: teX})))
第一轮运行,我这次的准确率只有69.11% ,第二次就提升到了82.29%。最终结果是95.41%,比Logistic回归的强!
请注意我们模型的核心那两行代码,完全就是无脑地全连接做了一个隐藏层而己,这其中没有任何的技术。完全是靠神经网络的模型能力。
深度学习时代的方案 - ReLU和Dropout显神通
上一个技术含量有点低,现在是深度学习的时代了,我们有很多进步。比如我们知道要将sigmoid函数换成ReLU函数。我们还知道要做Dropout了。于是我们还是一个隐藏层,写个更现代一点的模型吧:
X = tf.nn.dropout(X, p_keep_input) h = tf.nn.relu(tf.matmul(X, w_h)) h = tf.nn.dropout(h, p_keep_hidden) h2 = tf.nn.relu(tf.matmul(h, w_h2)) h2 = tf.nn.dropout(h2, p_keep_hidden) return tf.matmul(h2, w_o)
除了ReLU和dropout这两个技巧,我们仍然只有一个隐藏层,表达能力没有太大的增强。并不能算是深度学习。
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden): X = tf.nn.dropout(X, p_keep_input) h = tf.nn.relu(tf.matmul(X, w_h)) h = tf.nn.dropout(h, p_keep_hidden) h2 = tf.nn.relu(tf.matmul(h, w_h2)) h2 = tf.nn.dropout(h2, p_keep_hidden) return tf.matmul(h2, w_o) mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784]) Y = tf.placeholder("float", [None, 10]) w_h = init_weights([784, 625]) w_h2 = init_weights([625, 625]) w_o = init_weights([625, 10]) p_keep_input = tf.placeholder("float") p_keep_hidden = tf.placeholder("float") py_x = model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) predict_op = tf.argmax(py_x, 1) with tf.Session() as sess: # you need to initialize all variables tf.global_variables_initializer().run() for i in range(100): for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)): sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end], p_keep_input: 0.8, p_keep_hidden: 0.5}) print(i, np.mean(np.argmax(teY, axis=1) == sess.run(predict_op, feed_dict={X: teX, p_keep_input: 1.0, p_keep_hidden: 1.0})))
从结果看到,第二次就达到了96%以上的正确率。后来就一直在98.4%左右游荡。仅仅是ReLU和Dropout,就把准确率从95%提升到了98%以上。
卷积神经网络出场
真正的深度学习利器CNN,卷积神经网络出场。这次的模型比起前面几个无脑型的,的确是复杂一些。涉及到卷积层和池化层。这个是需要我们后面详细讲一讲了。
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data batch_size = 128 test_size = 256 def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden): l1a = tf.nn.relu(tf.nn.conv2d(X, w, # l1a shape=(?, 28, 28, 32) strides=[1, 1, 1, 1], padding='SAME')) l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1], # l1 shape=(?, 14, 14, 32) strides=[1, 2, 2, 1], padding='SAME') l1 = tf.nn.dropout(l1, p_keep_conv) l2a = tf.nn.relu(tf.nn.conv2d(l1, w2, # l2a shape=(?, 14, 14, 64) strides=[1, 1, 1, 1], padding='SAME')) l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1], # l2 shape=(?, 7, 7, 64) strides=[1, 2, 2, 1], padding='SAME') l2 = tf.nn.dropout(l2, p_keep_conv) l3a = tf.nn.relu(tf.nn.conv2d(l2, w3, # l3a shape=(?, 7, 7, 128) strides=[1, 1, 1, 1], padding='SAME')) l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1], # l3 shape=(?, 4, 4, 128) strides=[1, 2, 2, 1], padding='SAME') l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]]) # reshape to (?, 2048) l3 = tf.nn.dropout(l3, p_keep_conv) l4 = tf.nn.relu(tf.matmul(l3, w4)) l4 = tf.nn.dropout(l4, p_keep_hidden) pyx = tf.matmul(l4, w_o) return pyx mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels trX = trX.reshape(-1, 28, 28, 1) # 28x28x1 input img teX = teX.reshape(-1, 28, 28, 1) # 28x28x1 input img X = tf.placeholder("float", [None, 28, 28, 1]) Y = tf.placeholder("float", [None, 10]) w = init_weights([3, 3, 1, 32]) # 3x3x1 conv, 32 outputs w2 = init_weights([3, 3, 32, 64]) # 3x3x32 conv, 64 outputs w3 = init_weights([3, 3, 64, 128]) # 3x3x32 conv, 128 outputs w4 = init_weights([128 * 4 * 4, 625]) # FC 128 * 4 * 4 inputs, 625 outputs w_o = init_weights([625, 10]) # FC 625 inputs, 10 outputs (labels) p_keep_conv = tf.placeholder("float") p_keep_hidden = tf.placeholder("float") py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) predict_op = tf.argmax(py_x, 1) with tf.Session() as sess: # you need to initialize all variables tf.global_variables_initializer().run() for i in range(100): training_batch = zip(range(0, len(trX), batch_size), range(batch_size, len(trX)+1, batch_size)) for start, end in training_batch: sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end], p_keep_conv: 0.8, p_keep_hidden: 0.5}) test_indices = np.arange(len(teX)) # Get A Test Batch np.random.shuffle(test_indices) test_indices = test_indices[0:test_size] print(i, np.mean(np.argmax(teY[test_indices], axis=1) == sess.run(predict_op, feed_dict={X: teX[test_indices], p_keep_conv: 1.0, p_keep_hidden: 1.0})))
我们看下这次的运行数据:
0 0.95703125 1 0.9921875 2 0.9921875 3 0.98046875 4 0.97265625 5 0.98828125 6 0.99609375
在第6轮的时候,就跑出了99.6%的高分值,比ReLU和Dropout的一个隐藏层的神经网络的98.4%大大提高。因为难度是越到后面越困难。
在第16轮的时候,竟然跑出了100%的正确率:
7 0.99609375 8 0.99609375 9 0.98828125 10 0.98828125 11 0.9921875 12 0.98046875 13 0.99609375 14 0.9921875 15 0.99609375 16 1.0
综上,借助Tensorflow和机器学习工具,我们只有几十行代码,就解决了手写识别这样级别的问题,而且准确度可以达到如此程度。
阅读更多干货好文,请关注扫描以下二维码:

转载地址:http://qmkta.baihongyu.com/

你可能感兴趣的文章
unbtu使用笔记
查看>>
OEA 中 WPF 树型表格虚拟化设计方案
查看>>
Android程序开发初级教程(一) 开始 Hello Android
查看>>
使用Gradle打RPM包
查看>>
“我意识到”的意义
查看>>
淘宝天猫上新辅助工具-新品填表
查看>>
再学 GDI+[43]: 文本输出 - 获取已安装的字体列表
查看>>
nginx反向代理
查看>>
操作系统真实的虚拟内存是什么样的(一)
查看>>
hadoop、hbase、zookeeper集群搭建
查看>>
python中一切皆对象------类的基础(五)
查看>>
modprobe
查看>>
android中用ExpandableListView实现三级扩展列表
查看>>
%Error opening tftp://255.255.255.255/cisconet.cfg
查看>>
java读取excel、txt 文件内容,传到、显示到另一个页面的文本框里面。
查看>>
《从零开始学Swift》学习笔记(Day 51)——扩展构造函数
查看>>
python多线程队列安全
查看>>
[汇编语言学习笔记][第四章第一个程序的编写]
查看>>
android 打开各种文件(setDataAndType)转:
查看>>
补交:最最原始的第一次作业(当时没有选上课,所以不知道)
查看>>